https://doi.org/10.31219/osf.io/r3jvu
Published 15 Apr 2021 Volume 3, Article 227 (IX)
We calculate all compositions of permutations in the symmetric groups $S_2$ and $S_3$.
$n\in\mathbb N=\{1,2,3,...\}$
$\mathbb N_n=\{1,2,3,...,n-1,n\}$
$S_n:=$ group of all the permutations of $\mathbb N_n$ (symmetric group)
$S_1=\{(1)\}$
$S_2=\{(1),(12)\}$
$S_3=\{(1),(12),(13),(23),(123),(132)\}$
$\vdots$
$xfg:=g(f(x))$